On model selection consistency of regularized M-estimators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On model selection consistency of regularized M-estimators

Penalized M-estimators are used in many areas of science and engineering to fit models with some low-dimensional structure in high-dimensional settings. In many problems arising in machine learning, signal processing, and high-dimensional statistics, the penalties are geometrically decomposable, i.e. can be expressed as a sum of support functions. We generalize the notion of irrepresentability ...

متن کامل

On model selection consistency of M-estimators with geometrically decomposable penalties

Penalized M-estimators are used in diverse areas of science and engineering to fit high-dimensional models with some low-dimensional structure. Often, the penalties are geometrically decomposable, i.e. can be expressed as a sum of support functions over convex sets. We generalize the notion of irrepresentable to geometrically decomposable penalties and develop a general framework for establishi...

متن کامل

M-estimators and their consistency

M-estimators and their consistency This handout is adapted from Section 3.3 of 18.466 lecture notes on mathematical statistics, available on OCW. A sequence of estimators T n , one for each sample size n, possibly only defined for n large enough, is called consistent if for X 1 , X converges in probability as n → ∞ to a function g(θ) being estimated. We will consider consistency of estimators m...

متن کامل

Sparsistency of 1-Regularized M-Estimators

We consider the model selection consistency or sparsistency of a broad set of ` 1 regularized M -estimators for linear and nonlinear statistical models in a unified fashion. For this purpose, we propose the local structured smoothness condition (LSSC) on the loss function. We provide a general result giving deterministic su cient conditions for sparsistency in terms of the regularization parame...

متن کامل

Universal consistency of kernel nonparametric M-estimators

We prove that in the case of independent and identically distributed random vectors (Xi, Yi) a class of kernel type M-estimators is universally and strongly consistent for conditional M-functionals. The term universal means that the strong consistency holds for all joint probability distributions of (X, Y ). The conditional M-functional minimizes (2.2) for almost every x. In the case M(y) = |y|...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2015

ISSN: 1935-7524

DOI: 10.1214/15-ejs1013